Reactions of Organic Compounds

PART ONE: HYDROCARBONS

- COMBUSTION
- SUBSTITUTION
- ADDITION

COMBUSTION REACTIONS

- All hydrocarbons burn (combust)
- This involves a reaction with oxygen gas, O₂
- The products are always:
 CO₂ and H₂O

Eg.
$$C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6H_2O$$

Substitution Reactions

- Alkanes and Aromatics generally undergo substitution reactions, where 1 hydrogen will substituted for something else
- Eg.
- propane + chlorine -->

CH₃CH₂CH₃ + Cl₂
$$\Rightarrow$$
 CI- $\frac{1}{2}$ \xrightarrow{H} \xrightarrow

Addition Reactions

- Alkenes and Alkynes undergo addition reactions.
- Elements are added to the organic compound at the functional group
- Result is the loss of the multiple bond

Summary of Addition Reactions:

Hydrogenation

Addition of H₂ to a double bond

Halogenation

Addition of Cl₂, Br₂, F₂, I₂ to a double bond

Hydrohalogenation

• Addition of HCI, HBr, HF, HI to a double bond

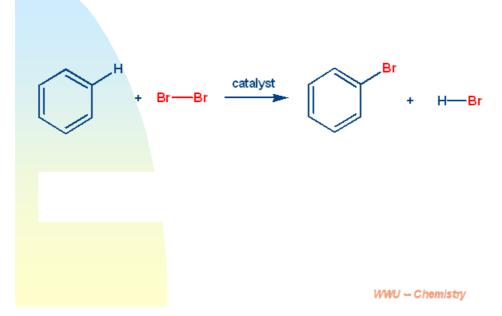
Hydration

Addition of water to a double bond (to make an alcohol)

eg

Markovnikov's Rule

"THE RICH GET RICHER"


- When adding a hydrogen compound to an alkene, the hydrogen goes to the carbon with the most hydrogens.
 - Eg.

• propene + hydrogen chloride --> Propan-2-8/
$$CH_{3}CH=CH_{2} + HCI \rightarrow H$$

Addition of Water to make an alcohol

 Aromatic Compounds, although they have double bonds, also undergo substitution reactions, rather than addition reactions.

Bromine Substitution on Benzene

3,3-dichloro-2-methylpentane + chlorine -->1,3,3-trichloro-2-methylpentane

MODEL KIT ACTIVITY

alken2.mov
rxn alkene1.mov
ethyl propanate.mov
alcohol dehyd.mov